247 research outputs found

    DNA damage-inducing anticancer therapies: From global to precision damage

    Get PDF
    DNA damage-inducing therapies are of tremendous value for cancer treatment and function by the direct or indirect formation of DNA lesions and subsequent inhibition of cellular proliferation. Of central importance in the cellular response to therapy-induced DNA damage is the DNA damage response (DDR), a protein network guiding both DNA damage repair and the induction of cancer-e

    Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination

    Get PDF
    Members of the resolvase/invertase family of site-specific recombinases require supercoiled substrates containing two recombination sites. To dissect the roles of supercoiling in recombination by the Tn3 and γδ resolvases and the phage Mu Gin invertase, we used substrates that provided some but not all of the topological features of the standard substrate. We divided the Tn3 resolvase reaction into two stages, synapsis and postsynapsis. We found the contributions of supercoiling to each stage were distinct, since substrate catenation in the absence of supercoiling or low levels of substrate supercoiling were sufficient for synapsis but not postsynapsis. Using structural and functional topological analyses, we verified that the resolvase synaptic complexes with nicked catenanes were recombination intermediates. The requirement for supercoiling was even less stringent for the γδ resolvase, which recombined nicked catenanes about half as well as it did supercoiled substrates. Gin recombination of catenanes occurred even if the recombinational enhancer was on a nicked ring, as long as both crossover sites were on a supercoiled ring. Therefore, supercoiling is required at the Gin crossover sites but not at the enhancer. We conclude that solely conformational effects of supercoiling are required for resolvase synapsis and the function of the Gin enhancer, but that a torsional effect, probably double helix unwinding, is needed for Tn3 resolvase postsynapsis and at the Gin recombination sites

    The human RAD54 recombinational DNA repair protein is a double-stranded DNA-dependent ATPase

    Get PDF
    DNA double-strand break repair through the RAD52 homologous recombination pathway in the yeast Saccharomyces cerevisiae requires, among others, the RAD51, RAD52, and RAD54 genes. The biological importance of homologous recombination is underscored by the conservation of the RAD52 pathway from fungi to humans. The critical roles of the RAD52 group proteins in the early steps of recombination, the search for DNA homology and strand exchange, are now becoming apparent. Here, we report the purification of the human Rad54 protein. We showed that human Rad54 has ATPase activity that is absolutely dependent on double-stranded DNA. Unexpectedly, the ATPase activity appeared not absolutely required for the DNA repair function of human Rad54 in vivo. Despite the presence of amino acid sequence motifs that are conserved in a large family of DNA helicases, no helicase activity of human Rad54 was observed on a variety of different DNA substrates. Possible functions of human Rad54 in homologous recombination that couple the energy gained from ATP hydrolysis to translocation along DNA, rather than disruption of base pairing, are discussed

    Exploiting DNA repair defects for novel cancer therapies

    Get PDF
    Most human tumors accumulate a multitude of genetic changes due to defects in the DNA damage response. Recently, small-molecule inhibitors have been developed that target cells with specific DNA repair defects, providing hope for precision treatment of such tumors. Here we discuss the rationale behind these therapies and how an important bottleneck-patient selection-can be approached

    Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange

    Get PDF
    Cells can achieve error-free repair of DNA double-strand breaks (DSBs) by homologous recombination through gene conversion with or without crossover. In contrast, an alternative homology-dependent DSB repair pathway, single-strand annealing (SSA), results in deletions. In this study, we analyzed the effect of mRAD54, a gene involved in homologous recombination, on the repair of a site-specific I-SceI-induced DSB located in a repeated DNA sequence in the genome of mouse embryonic stem cells. We used six isogenic cell lines differing solely in the orientation of the repeats. The combination of the three recombination-test substrates used discriminated among SSA, intrachromatid gene conversion, and sister chromatid gene conversion. DSB repair was most efficient for the substrate that allowed recovery of SSA events. Gene conversion with crossover, indistinguishable from long tract gene conversion, preferentially involved the sister chromatid rather than the repeat on the same chromatid. Comparing DSB repair in mRAD54 wild-type and knockout cells revealed direct evidence for a role of mRAD54 in DSB repair. The substrate measuring SSA showed an increased efficiency of DSB repair in the absence of mRAD54. The substrate measuring sister chromatid gene conversion showed a decrease in gene conversion with and without crossover. Consistent with this observation, DNA damage-induced sister chromatid exchange was reduced in mRAD54-deficient cells. Our results suggest that mRAD54 promotes gene conversion with predominant use of the sister chromatid as the repair template at the expense of error-prone SSA

    Gated rotation mechanism of site-specific recombination by Ď•C31 integrase

    Get PDF
    Integrases, such as that of the Streptomyces temperate bacteriophage ϕC31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. ϕC31 integrase belongs to the serine recombinase family, a large group of structurally related enzymes with diverse biological functions. It has been proposed that serine integrases use a “subunit rotation” mechanism to exchange DNA strands after double-strand DNA cleavage at the two recombining att sites, and that many rounds of subunit rotation can occur before the strands are religated. We have analyzed the mechanism of ϕC31 integrase-mediated recombination in a topologically constrained experimental system using hybrid “phes” recombination sites, each of which comprises a ϕC31 att site positioned adjacent to a regulatory sequence recognized by Tn3 resolvase. The topologies of reaction products from circular substrates containing two phes sites support a right-handed subunit rotation mechanism for catalysis of both integrative and excisive recombination. Strand exchange usually terminates after a single round of 180° rotation. However, multiple processive “360° rotation” rounds of strand exchange can be observed, if the recombining sites have nonidentical base pairs at their centers. We propose that a regulatory “gating” mechanism normally blocks multiple rounds of strand exchange and triggers product release after a single round

    Optical Imaging of Tumor Response to Hyperbaric Oxygen Treatment and Irradiation in an Orthotopic Mouse Model of Head and Neck Squamous Cell Carcinoma

    Get PDF
    Purpose: Hyperbaric oxygen therapy (HBOT) is used in the treatment of radiation-induced tissue injury but its effect on (residual) tumor tissue is indistinct and therefore investigated in this study. Procedures: Orthotopic FaDu tumors were established in mice, and the response of the (irradiated) tumors to HBOT was monitored by bioluminescence imaging. Near infrared fluorescence imaging using AngioSense750 and Hypoxisense680 was applied to detect tumor vascular permeability and hypoxia. Results: HBOT treatment resulted in accelerated growth of non-irradiated tumors, but mouse survival was improved. Tumor vascular leakiness and hypoxia were enhanced after HBOT, whereas histological characteristics, epithelial-to-mesenchymal transition markers, and metastatic incidence were not influenced. Conclusions: Squamous cell carcinoma responds to HBOT with respect to tumor growth, vascular permeability, and hypoxia, which may have implications for its use in cancer patients. The ability to longitudinally analyze tumor characteristics highlights the versatility and potential of optical imaging methods in oncological research

    Architectural plasticity of human BRCA2-RAD51 complexes in DNA break repair

    Get PDF
    The tumor suppressor BRCA2 is a large multifunctional protein mutated in 50-60% of familial breast cancers. BRCA2 interacts with many partners and includes multiple regions with potentially disordered structure. In homology directed DNA repair BRCA2 delivers RAD51 to DNA resulting in removal of RPA and assembly of a RAD51 nucleoprotein filame

    Variation in RAD51 details a hub of functions: Opportunities to advance cancer diagnosis and therapy

    Get PDF
    Loss of genome stability is one of the hallmarks of the enabling characteristics of cancer development. Homologous recombination is a DNA repair process that often breaks down as a prelude to developing cancer. Conversely, homologous recombination can be the Achilles' heel in common anti-cancer therapies, which are effective by inducing irreparable DNA damage. Here, we review recent structural and functional studies of RAD51, the protein that catalyzes the defining step of homologous recombination: homology recognition and DNA strand exchange. Specific mutations can be linked to structural changes and known essential functions. Additional RAD51 interactions and functions may be revealed. The identification of viable mutations in this essential protein may help define the range of activity and interactions needed. All of this information provides opportunities to fine-tune existing therapies based on homologous recombination status, guide diagnosis, and hopefully develop new clinical tools
    • …
    corecore